M&M Ch 4.1, 4.2, 4.5 Probability

Probability Probability Scales
, . LOG-ODDS ODDS = PROBABILITY / (1— PROBABILITY)
Meaning Long Run Proportion (logit) PROBABILITY = ODDS/ (ODDS + 1)
Estimate of (Un)certainty ODDS PROBABILITY
Amount prepared to bet % 1.0
Use Describe likely behaviour of data
Communicate (un)certainty
0.9
Measure how far data are from 2
some hypothesized model
How Arrived At 4(:1) 0.8
Subjectively 3(:1)
1
Intuition, Informal calculation, consensus 2(:1) 0.7
Empirically '
Experience (actuarial, ...) 0.6
Pure Thought
Elementary Statistical Principles 0 1(:1) 0.5
If necessary, breaking Complex
outcomes into simpler ones 0.4
Advanced Statistical Theory 0.5(:1)
calculus e.g. Gauss' Law of Errors 0.3
References -1
* WM S5, Chapter 2 « Moore & McCabe Chapter 4 «Colton, Ch 3
* Freedman et al. Chapters 13,14,15 «Armitage and Berry, Ch 2 0.25(:1) 0.2
* Kong A, Barnett O, Mosteller F, and Youtz C. "How Medical Professionals
Evaluate Expressions of Probability” NEJM 315:; 740-744, 1986 ... on reserve 2
0.1
* Death and Taxes ¢ Rain tomorrow ¢ Cancer in your lifetime « Win
lottery in single try « Win lottery twice « Get back 11/20 pilot
guestionnaires * Treat 14 patients get 0 successes * Duplicate 0.0
Birthdays e« Canada will use $US before the year 2010 —o 0(:1) )
e OJ murdered his wife ¢« 50 year old has colon ca
* DNA matched « 50 year old with +ve haemoccult test has colon ca
e OJ murdered wife | DNA matched e child is Group A Strep B positive

* 8 yr old with fever & v. inflamed nodes is Gp A Strep B positive

" | " is shorthand for "given that.." * There is life on Mars
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How to calculate probabilities

Wall Street Journal

"l figure there's a 40% chance of showers, and a
10% chance we know what we're talking about”

Probability Calculations

Basic Rules
@ d Probabilities add to 1
Prob(event) =
A A and B | 1-Prob(complement)
B

ADDITION FOR "EITHER A ORB"
If mutually exclusive

"PARALLEL" P(A or B) = P(A) + P(B)

If overlapping
P(A or B) = P(A) + P(B) - P(A and B)

A __— B

/\NotB

\/B
\NotB

MULTIPLICATION FOR"A AND B" OR"A THEN B"

If independent

"SERIAL" P(A and B) = P(A) « P(B)

If dependent
P(A and B) = P(A) « P(B | A)
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Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

More Complex:

¢ Break up into elements

«  Look for already worked-out calculations

« Beware of intuition, especially with "after the fact" calculations for non-
standard situations
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Examples of Conditional Probabilities...

GENDER: 2 BIRTHS

GENDER: 2 from 5M&5F

1st 2nd
- () 25
0.5
0.5
& 0.25
F
o M
0.5 |09
P o 0.25
F

1st 2nd

M
- 2(0/90
M 4/9

5/10
e 25/90
— F

M— 25/90

5/10 |5/9

F 4/9
|
F

20/90

PERSONS PERSONS
Develop Develop
Smoke? Lung Ca.? Lung Ca.? Smoke?
YES YES
YES YES
. |
NO NO
o YES YES
NO NO

SMOKERS: 1 M&1F

SMOKERS: Husband & Wife

M F
YES
r |
YES
| |
NO
o YES
r |
NO | |
NO

H w
YES
—
YES
I
_ NO
YES
—
NO
I
NO

Testing Dx Tests...
Disease Test

II |+II |+

Dx Tests In Practice...

Test Disease

II |+II |+

O.J. SIMPSON

Murdered DNA
wife? Match?
YES

YES

—
I
NO

YES

—
L]
NO

NO

O.J. SIMPSON
DNA Murdered
Match? wife?

YES

YES

—
I
NO
YES

—
NO
I
NO




Testing Dx Tests...

Dx Tests In Practice...

Disease Test

+ Sensitivity

Prevalence
(Pre-test Prob.)

Specificity

III |+ II I|+

Test Disease

|+

+ Positive
Predictive Value

|+II

Negative
Predictive Value



219-JamesHanley
Sensitivity

219-JamesHanley
Specificity

219-JamesHanley
Positive
Predictive Value

219-JamesHanley
Negative
Predictive Value

219-JamesHanley
Prevalence
(Pre-test Prob.)


Pre-test Probability or Odds — Post-Test Probability or Odds

Positive Predictive Value: Prob| Disease+ | Test + |

Prior Prob|D| x Sens

PPV =
Prior Prob|D] x Sens + (1 — Prior Prob|D]) x (1 — Spec)

Negative Predictive Value: Prob[ Disease - | Test - ]

(1 — PriorProb|D]) x Spec

NPV =
(1 — Prior Prob|D]) x Spec + Prior Prob|D] x (1 — Sens)




Pre-test Probability or Odds — Post-Test Probability or Odds

Post-Test Odds of D+ after positive (4) test [«Pretest” = Prior
Post-test Odds = Likelihood Ra,tio< 1) X Pre-test Odds

Sensitivity 9 Pre-test Probability
1 - Specificity 1 - Pre-test Probability
True Positive Fraction y Pre-test Probability
False Positive Fraction 1 - Pre-test Probability

Post-Test Odds of D+ after negative (-) test
Post-test Odds = Likelihood Ratio _y x Pre-test Odds

1 - Sensitivity y Pre-test Probability

Specificity 1 - Pre-test Probability
False Negative Fraction y Pre-test Probability
True Negative Fraction 1 - Pre-test Probability

The odds formulation separates the characteristics of test (LR) from the context (PriorProb[D]).
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Reverse Probabilities:

Probability[ data | Hypothesis | * Probability[ Hypothesis | data |

U.S. National Academy of Sciences under fire
over plans for new study of DNA statistics:

Confusion leads to retrial in UK.
[NATURE p 101-102 Jan 13, 1994 ]
... He also argued that one of the prosecution's
expert witnesses, as well as the judge, had
confused two different sorts of probability.

One is the probability that DNA from an
individual selected at random from the
population would match that of the semen
taken from the rape victim, a calculation
generally based solely on the frequency of
different alleles in the population.

The other is the separate probability that a
match between a suspect's DNA and that

taken from the scene of a crime could have
arisen simply by chance 1 -- in other words that

the suspect is innocent despite the apparent
match. This probability depends on the other

factors that led to the suspect being identified
as such in the first place.

1 underlining is mine (JH). The wording of the singly-
underlined phrase is imprecise; the doubly-underlined
wording is much better .. if you read 'despite’ as "given
that" or "conditional on the fact of" JH

During the trial, a forensic scientist gave the first probability in reply
to a question about the second. Mansfield convinced the appeals
court that the error was repeated by the judge in his summing up,
and that this slip -- widely recognized as a danger in any trial
requiring the explanation of statistical arguments to a lay jury --
justified a retrial.

In their judgement, the three appeal judges, headed by the Lord
Chief Justice, Lord Farquharson, explicitly stated that their decision
"should not be taken to indicate that DNA profiling is an unsafe
source of evidence".

Nevertheless, with DNA technigues being increasingly used in
court cases, some forensic scientists are worried that flaws in the
presentation of their statistical significance could, as in the Deen
case, undermine what might otherwise be a convincing
demonstration of a suspect's guilt.

Some now argue, for example, that quantified statistical
probabilities should be replaced, wherever possible, by a more
descriptive presentation of the conclusions of their analysis. "The
whole issue of statistics and DNA profiling has got rather out of
hand," says one.

Others, however, say that the Deen case has been important in
revealing the dangers inherent in the ‘prosecutor's fallacy'. They
argue that this suggests the need for more sophisticated
calculation and careful presentation of statistical probabilities.

"The way that the prosecution's case has been presented in trials
involving DNA-based identification has often been very
unsatisfactory,” says David Balding, lecturer in probability and
statistics at Queen Mary and Westfield College in London.
"Warnings about the prosecutor's fallacy should be made much
more explicit. After this decision, people are going to have to be
more careful.”
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Reverse Probabilities:

Probability[ data | Hypothesis | * Probability[ Hypothesis | data |

"The prosecutor's fallacy"

Who's the DNA fingerprinting pointing at?
New Scientist, 29 Jan. 1994, 51-52. David Pringle

Pringle describes the successful appeal of a rape case where
the primary evidence was DNA fingerprinting. In this case the
statistician Peter Donnelly opened a new area of debate. He
remarked that

forensic evidence answers the question
"What is the probability that the defendant's DNA
profile matches that of the crime sample,

assuming that the defendant is innocent?"

while the jury must try to answer the question
"What is the probability that the defendant is
innocent, assuming that the DNA profiles of the

defendant and the crime sample match?"

(JH) Donnelly's words make the contrast of the two
types of probability much "crisper”. The fuzziness of
the wording on the previous page is sadly typical of
the way statistical concepts often become muddied
as they are passed on.

page’5

Apparently, Donnelly suggested to the Lord Chief Justice and
his fellow judges that they imagine themselves playing a game
of poker with the Archbishop of Canterbury. If the Archbishop
were to deal himself a royal flush on the first hand, one might
suspect him of cheating. Assuming that he is an honest card
player (and shuffled eleven times) the chance of this happening
is about 1 in 70,000.

But if the judges were asked whether the Archbishop were
honest, given that he had just dealt a royal flush, they would be
likely to place the chance a bit higher than 1 in 70,000 *.

The error in mixing up these two probabilities
is called the "the prosecutor's fallacy",
and it is suggested that newspapers regularly

make this error.

Apparently, Donnelly's testimony convinced the three judges
that the case before them involved an example of this and they
ordered a retrial

from Vol 3.02 of Chance News

* (JH) This is a very nice example of the advantages of
Bayesian over Frequentist inference .. it lets one take
one's prior knowledge (the fact that he is the
Archbishop) into account.
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SOUNDING BOARD

SCREENING FOR HIV: CAN WE AFFORD
THE FALSE POSITIVE RATE?

WE are a testing culture: we test our urine for drugs;
we test our sweat for lies. It is not surprising that we
should also test our blood for the acquired immunode-
ficiency syndrome {AIDS). But before we screen low-
risk groups for antibody to the human immunodefi-

" ciency virus (HIV), we should consider what the
results will mean. Tests for HIV antibody appear to
be characterized by extraordinarily low false positive
rates. Even so, positive initial and confirmatory tests
in someone at low risk of HIV infection are by no
means synonymous with infection, because of the pos-
sibility of false positive results. Furthermore, any in-
crease in the false positive rate could turn a screening
program into a social catastrophc

Whatever its scientific merits, widespread HIV-

antibody testing is becoming a political reality. Blood '

banks screen potential donors; the armed forces test
recruits and personnel on active duty; the State De-
partment tests Foreign Service officers and their de-
pendents; and the Peace -Corps and Job Corps test
their applicants. Soon, screening of immigrants, pris-
oners in federal penitentiaries; and perhaps veterans
will begin. Pregnant women have been advised to un-
dergo ‘testing in both the first and third trimesters.’
President Reagan has suggested that applicants for
marriage licenses should also be screened.?

Plans to test low-risk populations for HIV antibody
generally ignore the possibility of false positive results.
When screening of blood donors began two years ago,
decontaminating the blood supply was an urgent
need; it justified the assumption that confirmatory
testing could identify most, or at least enough, of the
testing errors. But before we establish a public policy
of widespread screéning, we should consider whether
testing that is justified in the blood bank is also jus-
tified in other settings. If the false positive rate
is not virtually zero, screening a population in
which the prevalence of HIV is low will unavoid-
ably stigmatize and frighten many healthy people.
How will these mistakes change the lives of the unfor-
tunate persons who are incorrectly identified as infect-
ed? Will such screening affect the course of the AIDS
epidemic? Does the benefit of identifying infected per-
sons justify the personal and social burden of false
positive tests?

CHARACTERISTICS OF THE TESTS

The ceniral issue is the false positive rate of tests for
HIV infection. Current screening programs use a se-
quence of tests, starting with an enzyme immunoas-
say. Serum samples yielding repeatedly positive re-
sults on enzyme immunoassay are subjected to more
complicated and expensive confirmatory testing, typi-
cally with a Western blot. A positive confirmatory test
is considered evidence of HIV infection.

July 23, 1987

The results of screening among blood donors al-
low us to deduce an upper limit for the false positive
rate in testing conducted to date. In 1985 and 1986,
0.01 percent of female blood donors in Atanta and
of. both male and female blood donors in the north-
eastern Netherlands had antibody to HIV on both-
enzyme immunoassay and Western blot assay.>* In
the worst case, if none of those blood donors were
truly infected, then the highest possible false positive
rate for the pair of tests would be 0.01 percent. Be-
cause some of those blood donors were truly infected,
the false positive rate was almost ccrtainly even lower.
If we make the best-case assumption that the prob-
ability of a false positive Western blot is mdepcndcnt
of the probability of a false positive enzyme immuno-
assay, or if we have data about the false positive rate
on Western blot tests among patients with false posi--
tive enzyme immunoassays, the joint false positive
rate of the two tests in sequence will equal the product
of their false positive rates. One recent study found
that the false positive rates of six commercial enzyme
immunoassay kits used to test blood from donors
ranged from zero to 0.42 percent.® Another study
noted variations in false positive rates of enzyme
immunoassays, even among different batches of one
manufacturer’s kit.® Other investigators have found
that the false positive rate of enzyme immunoassays
can be as high as 6.8 percent among hospitalized
patients.’

Confrrmatory tests are intended to distinguish false
positive results of enzyme immunoassays from those
that truly represent HIV infection. Here, variations in
the false positive rate may be even more important.
The Western blot, the most common confirmatory test
for HIV antibody and a standard against which new
techniques are evaluated, is complex and very labor
intensive. Its techniques have not been standardized,
and the magnitude and consequences of interlabora-
tory variations have not been measured. Its results
require interpretation, and the criteria for this inter-
pretation vary not only from laboratory. to laboratory
but also from month to month. When widespread
Western blot confirmation of positive findings on en-
zyme immunoassays began in 1985, a band indicating
the presence of antibody to a protein of 24,000
to 25,000 daltons was regarded as evidence of infec-
tion. Some laboratories report this as a 24-kd band,
whereas others report it as a 25-kd band. Within a
year, many investigators had concluded that apparent
bands in this region could represent artifacts and that
even a definite band there was not specific for HIV
infection.®

By mid-1986, the U.S. Army had adopted criteria
that required either a band at 4] kd or bands at both
24 and 55 kd. But when investigators from the Army
HIV-testing program sent panels of 15 serum samples
from healthy adults at low risk to five large commer-
cial firms offering HIV Western blot testing, six differ-
ent specimens were classified as positive. All samples
had yielded repeatedly negative results at the Walter
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Reed Army Institute of Research. Three laboratories
considered | of 15 specimens positive; one considered
3 positive.’

Within several months of the report from Walter
Reed, investigators in both Sweden and Paris reported
what they considered false positive results on Western
blot tests despite the presence of both 25- and 55-kd
bands. Their conclusion was based on the absence of
risk factors in the individual blood donors and of con-
cordant findings on confirmatory tests in research lab-
oratories.!®!! Reactivity to the cultured human cells
in which the virus had grown served to explain two
unexpectedly positive Western blots.'?!* To find that
explanation, one patient’s serum was examined in
three research laboratories. Other investigators have
reported instances in which one specimen from a pa-
tient yielded results on a Western blot that were inter-
preted as positive, whereas subsequent specimens
from the same patient yielded negative results.'®!>
Several abstracts presented at the recent Third Inter-
national Conference on AIDS described extensive re-
testing and follow-up of “atypical positive” results
that would clearly be considered negative according to
the U.S. Army criteria published a year earlier.}6-20
Another study described very sensitive Western blot
tests that even showed reactivity in the 4l-kd re-
gion to serum from normal donors at low risk for
HIV infection.?! Thus, the lack of standardization
persists.

A recent Army study compared the interpretation
of the first Western blot performed with the final clas-
sification of the specimens after more extensive inves-
tigation. Among specimens that were repeatedly posi-
tive on enzyme immunoassay, the false positive rate
was 1.17 percent.?? If the false positive rate of enzyme
immunoassays is about 0.4 percent, the joint false pos-
itive rate of the two tests performed sequentially
should be about 0.005 percent. A pair of tests with a
joint false positive rate of 1 per 20,000 is unusual in
clinical medicine.

These reports reflect the difficulty, uncertainty, and
even disagreement that characterize testing for anti-
body to HIV. They suggest that positive results from
low-risk populations deserve thoughtful interpretation
and perhaps further testing. Despite these technical
difficulties, laboratories testing blood donors and mili-
tary recruits have achieved a very high standard of
performance. However, specimens collected in more
widespread screening programs might not all be ana-
lyzed in reference laboratories or with the same tech-
niques. Decentralized testing might further compro-
mise standardization. Smaller laboratories could not
offer the research methods that are sometimes used to
verify positive Western blot findings in persons at.,
low risk. Technicians processing the specimens might
not be as skilled as those who have developed the
technique, and laboratories performing a large num-
ber of tests might be less inclined to scrutinize posi-
tive results. Interlaboratory variation in test charac-
teristics may increase as a new generation of tests

THE NEW ENGLAND JOURNAL OF MEDICINE

(under development by more than 25 companies) be-
comes available.?? Some new tests have been proposed
to be used as a one-stage procedure, thus eliminating
the extra protection of an independent confirmatory
test.242> '

PREVALENCE OF INFECTION

What do we know about the prevalence of HIV
infection? Perhaps 50 percent of homosexual men in
San Francisco have serologic evidence of the infection.
The prevalence of seropositivity among intravenous
drug abusers and among patients with hemophilia
who received factor VIII concentrate pooled before
the advent of heat inactivation is similar.®® At some-
what lower risk are patients who received repeated
transfusions of red cells, platelets, and plasma before
routine HIV testing of donated blood began in 1985.
Antibody testing of one group of patients with leuke-
mia treated between 1978 and 1985 showed that about
5 percent became seropositive. The patients who be-
came seropositive had received an average of 164 units
of blood products.?®

Other segments of the population are at much lower
risk. Screening of military recruits has shown 0.16
percent of the men and 0.06 percent of the women to
be seropositive.2” When antibody screening of donat-
ed blood began in 1985, 1 unit of blood in 2500 had
HIV antibody.?® At that rate, the chance of infection
from 2 units of blood donated before antibody screen-
ing began would be about 0.08 percent. Among female
blood donors, as noted, the reported prevalence of
seropositivity is 0.01 percent. Some of these donors
may have had sexual contact with members of known
high-risk groups; among women without such contact,
the prevalence of infection may be even lower than
0.0] percent.

MEeaNING oF PosITIvE TESTS

Test sensiti\fity is not the issue here, and to empha-
size our concern with the false positive rate, our analy-
sis makes the best-case assumption that the combina-
tion of enzyme immunoassay and Western blot testing
for HIV is 100 percent sensitive, identifying all
persons who are infected. The meaning of positive
tests will depend on the joint false positive rate.
Because we lack a gold standard, we do not know
what that rate is now. We cannot know what it will be
in a large-scale screening program. However, we can
be fairly sure that without careful quality control, it
will rise. - ' T

Bayes’ rule allows us to calculate the probabil-
ity that a person with positive tests is infected.??
Imagine testing 100,000 people, among whom the
prevalence of disease is 0.01 percent. Of the 100,000,
10 are infected; 99,990 are not. A combination of
tests that is 100 percent sensitive will correctly iden-
tify all 10 who are infected. -If the joint false pos-
itive rate is 0.005 percent, the tests will yield false
positive results in 5 of the 99,990 people who are
not infected. Thus, of the 15 positive results, 10

239
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will come from people who are infected and 5 from
people who are not infected, and the probability that
infection is present in a patient with positive tests
will be 67 percent.

Figure 1 shows the consequences of screening in
four populations. The implications of positive test re-
sults depend on the joint false positive rate. The hori-
zontal axis shows a range of joint false positive rates
from 0 to 0.5 percent. If the prevalence of infection is 5
percent or higher, more than 90 percent of persons
with positive tests will truly be infected, whether the
joint false positive rate is 0 or 0.5 percent. Un-
fortunately, this is not true in populations at lower
risk. The probability that infection is present in a
male army recruit with positive tests is 97 percent
if the joint false positive rate is 0.005 percent, and
94 percent if the joint rate is 0.0l percent, but
it will be only 62 percent if the joint rate rises to 0.1
percent. The probability that infection is presentin a
female blood donor with positive tests is about 67 per-
cent if the joint false positive rate is 0.005 percent, and
about 50 percent if the joint rate is 0.01 percent, but it
will be only 9 percent if the joint rate rises to 0.1
percent. In other words, at this higher joint false posi-
tive rate, 10 women without HIV infection will be
falsely identified as infected for each truly infected
blocd donor found. If the joint false positive rate in-
creases to 0.5 percent, as might occur in a single-stage
testing program, then 50 women without HIV infec-
tion will be stigmatized for every truly infected person
identified.

The joint false positive rate may rise if single-stage
testing is introduced into physicians’ offices; a false
positive rate of 0.6 percent was recently reported for
such a test.?*?® The joint rate will rise if tests are
performed and interpreted less carefully when the
amount of testing increases substantially. Finally, it

§
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Figure 1. Meaning of Positive Screening Tests for HIV.
The horizontal axis shows the joint false positive rate of the tests.
The left vertical scale shows the probability that RIV infection is
present in & person with positive tests. The right vertical scale
shows the number of uninfected persons falsely classified as in-
fected for every infected person correctly identified. Sensttivity is
assumed to be 100 percent. The four lines correspond to four
populations that might be screened, each of which has a different
prevalence of HIV infection. The boldface line represents iow-
prevalence poputations such as those in which screening has

recently been proposed.

will rise if criteria for defining a positive Western blot
test are less stringent than those observed by thc mili-
tary and the Red Cross.

CONSEQUENCES OF WIDESPREAD SCREENING

How many cases of infection can we hope to prevent
by screening groups at low risk? It is not clear how
many of the few infected persons identified would

have transmitted the virus to their sexual partners and

children, or that testing will substantially reduce the
transmission rate.8:30-34 Screening blood donors pre-
vents transmission because we do not transfuse the
blood. But how much does screening change behav-
ior? By no means all seropositive persons are persuad-
ed to practice “safer sex.”3%%7 Apparently only a mi-
nority abstain from childbearing.?® What can we
expect to happen when we screen other populatlons’
We do not know what changes it would make in pubhc
health and our society.-

Before we test, we should think again about the
ethics of screening and about the social consequences
of positive tests for HIV antibody. The first proposals
to screen blood donors elicited widespread discussion
of the potential threat to individual privacy. Special
procedures were devised to ensure that this sensitive
information remained private. The statutory require-
ment of HIV testing would in all likelihood eliminate
such protection. The Secretary of Education has sug-
gested that positive test results should be reported not
only to public health authorities but also to the sexual
partners of the person tested.®

Despite educational efforts, public understanding of
the epidemic is limited. As we contemplate recom-
mendations and regulations, we should remember
that most people consider a “positive AIDS test” to be
a sentence to ghastly suffering and death. Patients
with such results will take little comfort in Bayes’ rule
and will be offered little reassurance by their insurers,
employers, and acquaintances.

A TimME For CauTION

The AIDS epidemic frightens us all. But we should
not allow our fear to cloud our judgment. Hasty and
indiscriminate screening for antibody to HIV is im-
prudent and potentially dangerous, whether we sug-
gest the tests to young women, require them of en-
gaged couples, or impose them on our veterans.
Although screening of blood donors and military re-
cruits appears to have generated few false positive re-
sults, we do not know whether this performance can
continue if the testing programs are expanded. Stand-
ardization and quality control should come first.
These will take time and money; monitoring laborato-
ry-performance will require continuing effort, expendi-
ture, and regulation.

Nor will our problems be purely technical. HIV
screening poses questions that are at once scientific,
political, legal, and philosophical. If laws are to link
our fates to test results, should not due process be
brought to the benches where those tests are per-
formed? We will need guarantees not only of the confi-
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""Homegrown"" Exercises around M&M Chapter 6 -3- Exercise to lllustrate Type | Errors and Statistical Power

DISTINGUISHING POPULATIONS WITH DIFFERENT MEAN BIRTHWEIGHTS

The entriesin the 4 panels bel ow represent birthweights, recorded to the nearest 10 grams, but with the ending 0 removed to save space. Thus the very first entry of 336 in Panel A
represents a birthweight of 3360 grams or 3.36 Kg. The birthweights in a panel are al from infants of the same sex, but different panels may be from different sexes. The standard
deviation of the entriesin each panel is approximately SD = 43 (430 grams).

By eye, by comparing al the entriesin a panel with all of those in another, you may be able to discern if two panels have different means. But what can you conclude if you take
just a sample from each of 2 panels and perform aformal test of significance on the difference in the sample means? Details for exercise are explained on p 5.

PANEL A PANEL B
336 357 338 379 386 362 277 340 404 300 397 399 306 371 356 368 362 396 338 326
295 340 264 317 303 342 340 400 348 327 331 411 422 413 381 399 385 333 203 311
294 390 347 346 294 407 408 380 343 413 319 349 268 383 398 328 385 373 274 467
346 360 321 379 338 345 377 362 318 341 328 377 300 341 386 387 265 411 378 358
428 346 354 358 353 401 338 283 356 275 373 336 366 325 322 283 329 323 327 401
366 303 351 378 413 381 319 312 298 281 292 313 340 424 311 363 335 350 343 364
372 380 282 303 345 282 445 304 339 357 348 298 314 401 384 362 370 375 373 312
314 264 380 389 264 325 327 298 334 347 399 355 435 437 362 316 371 340 315 359
299 428 338 277 268 310 345 316 396 381 414 302 317 407 432 334 428 386 406 388
400 318 341 321 328 370 336 371 371 449 325 334 448 344 373 296 301 347 361 294
PANEL C PANEL D

344 382 358 429 398 336 406 366 385 357 262 328 363 399 328 375 310 417 278 346
258 346 401 315 430 373 377 346 378 357 340 350 364 299 318 339 307 381 314 388
346 406 425 346 367 347 388 348 300 326 355 290 331 304 351 333 382 310 331 287
333 397 355 282 360 421 416 346 370 329 370 356 394 265 368 288 448 416 350 333
366 360 282 393 329 352 450 371 379 323 306 360 236 273 381 435 332 323 349 354
430 397 349 321 334 369 367 274 427 355 294 337 390 408 299 345 375 428 273 353
349 393 295 372 283 313 316 268 334 413 407 419 333 331 330 387 303 275 334 335
322 397 309 348 376 345 497 343 361 391 391 348 348 302 356 370 374 353 352 432
327 374 344 354 322 277 287 396 323 389 353 346 356 342 382 293 348 332 375 350
391 303 319 314 368 389 343 342 330 369 346 407 339 364 288 389 282 434 380 378

Key

Cailini[céad/deireadh -- tri céad, daiched is a tri/seacht]

Buachailli [-- tri céad, deich is daichead, is a sé]



""Homegrown"" Exercises around M&M Chapter 6 -3- Exercise to lllustrate Type | Errors and Statistical Power

DISTINGUISHING POPULATIONS WITH DIFFERENT MEAN ADULT HEIGHTS

The entriesin the 4 panels below represent adult heights, recorded to the nearest centimetre. Thus the 1st entry (188) in Panel A represents a height of 188 cm or 1.68m. The
birthweightsin a panel are all from adults of the same sex, but different panels may be from different sexes. The standard deviation of the entries in each panel is approximately SD
= 6Ccm.

By eye, by comparing all the entriesin a panel with all of those in another, you may be able to discern if two panels have different means. But what can you conclude if you take
just a sample from each of 2 panels and perform aformal test of significance on the difference in the sample means? Details for exercise are explained on p 5.

PANEL A PANEL B
188 178 175 168 169 171 170 166 161 171 156 159 169 161 157 158 171 166 169 170
180 178 184 174 168 176 175 167 182 177 168 170 175 171 167 168 160 170 173 165
181 183 185 178 165 172 178 176 164 186 160 162 156 150 168 157 168 167 159 168
176 179 169 169 184 169 173 173 173 177 159 165 165 165 164 163 159 169 176 176
177 170 179 183 183 172 189 181 174 171 166 155 164 162 172 172 156 166 166 161
170 182 163 171 176 176 183 181 174 175 165 162 177 162 160 171 164 174 164 173
171 167 175 175 174 168 170 175 185 181 174 160 164 163 171 172 159 157 159 168
183 180 178 170 174 173 176 173 175 173 161 166 160 167 168 162 158 154 159 167
165 172 175 183 167 171 176 182 174 170 166 163 166 177 168 172 177 169 175 166
187 185 167 169 168 178 182 178 171 175 158 156 165 161 162 157 168 163 167 166
PANEL C PANEL D
171 175 178 168 181 177 185 174 177 177 165 161 168 155 172 160 176 170 162 161
169 174 184 173 182 179 178 167 186 175 167 158 155 163 158 159 174 179 161 157
176 172 176 174 174 170 184 173 174 174 176 171 160 164 167 173 174 163 162 157
179 177 177 176 171 161 172 168 177 176 155 167 161 163 169 168 158 166 160 167
186 172 173 184 167 161 166 171 180 163 163 162 165 167 169 161 174 164 154 174
181 176 179 176 170 172 165 178 174 182 171 168 162 173 164 172 170 166 165 163
169 179 176 183 172 172 170 178 179 178 166 168 158 161 175 164 164 164 167 173
179 166 174 184 169 164 177 180 183 172 162 164 161 169 170 157 164 169 161 166
183 164 178 166 177 186 174 179 175 179 174 168 174 168 156 160 153 167 167 156
183 165 174 173 172 171 176 188 181 169 176 165 161 164 161 163 168 161 173 166

Key
Fir [ar clé -- céad, deich is tri fichid, cuig]
M@ [-- céad, tri fichid, cuig ]



""Homegrown"" Exercises around M&M Chapter 6 -3- Exercise to lllustrate Type | Errors and Statistical Power

* Birthweight:

Perform atest of each of the following 4 (obviously competing, so not independent)
contrasts; use new samples of size n=4 and n=4 for each of the 4 tests; use a z-test (s
isgiven) with alpha=0.10 (two-sided, S0 g pha=1.645) for each. []

IL.nmavs.nmg 2. ngvs.mp 3.nMpVvs. nmp 4. mgVvs. ng

* Adult heights:
test the following 4 contrasts*, againusingn=4vsn=4.

IL.nmavs.ng 2. ngvs.mp 3.MpVvs. nmp 4. mgVvs. ng
* NB: 1 and 2 are not the same as 1 and 2 for birthweight above.
To save you time, the structure of the testsislaid out below.

To help with rapid compilation of results in class, circle below
which contrasts yielded "statistically significant' differences and
BRING YOUR 8 DECISIONS TO CLASS.

Birthweights Avs. B Cvs.D Avs. D Bvs. C
Adult Heights Avs. C Bvs. D Avs. D Bvs. C

"Arithmetic" of Testing if 2 panels have same mean

Hp: my = np [samesex] a =0.10 (2-sided) Hg: mp * np [different sexes]
Reject Hg (i.e. infer that my t np) if
X7 X2 645 or — 1 X2
1 1 1 1
S A\ ,7 + = S A\ ,7 + =
n no n n2

(use z-test since s is given)

<-1.645

i.e. conclude "different sexes’ if

- — 1 1
— > _— 4+ = *k*
[X1—=X2|>1.645s "\ ,nl N

s isgiven, so we can work out ahead of time (from *** ) what difference between x

)1 and X2 would lead usto conclude "different sexes'... the average birthweights need
to be > 50 (ie 500q) apart, and average heights > 7 cm apart.

[with t-tests, we don't have s, and in fact have to calculate s from sample)

Vaueof 1.645 s ’i + 1
ni n2

BIRTHWEIGHTS ADULT HEIGHTS
s=43gx10 s=6cm
n=n,= 4 50 gx 10 7.0 cm

Just for interest, hereiswhat isisfor other sample sizes...

n=n,= 8 35.4gx10 49cm
n;=n,=16 25.0gx 10 3.5cm

On class, | will 'play god" and tell you which contrasts belong in
which rows. In practice, you may not be able to unequivocally
determine the truth -- or it may take a lot more work. And
determining how big a difference is takes even more work.

Results of statistical tests [columns] performed by students in

relation to real situations[rows]

"Can't say" "different”
p>0.10 p<0.10 No.
BIRTHWEIGHT ("negative") ("positive") of
("N.S" ("Stat. sig.") Tests
same sex
different sexes
"Can't say" "different”
p>0.10 p <0.10 No.
ADULT HEIGHT ("negetive") ("positive") of
("N.S") ("Stat. sig.") Tests

Ssame sex

different sexes




Results of statistical tests [columns] performed by students
in relation to real situations [rows]

BIRTHWEIGHT
"Can't say" "different” No. of
p>0.10 p<0.10 Tests
("negative") ("positive™)
("N.S") ("Stat. sig.")
3. AvS.D (=) |ko ko aB AB AC AC AS AS AS MPS M MMM KR AM BF
BFE TE TE NW NW NW NW NW
NW NW NV PW PW RB RB AS
AS BM AS SP SP MPS MPS \C
Same SeEX VC SR SR RP RP AE JB JB
M5 MS KO KO CF CF US1 USl
LR LR BM MA MA BMG BMG USZ
4. Bvs.C (=) |usz vs Vs KR JS JS JMK JMK
TdiP TdiP AM AR AR SF SF GF
o
/3 38 81
BM AS AS SP _SP _MPS MPS MBS BM M5 AS KR NW AS
1. Avs.B (!) |vc vc SR SR RP RP AE JB
JB MBS M5 KO KO CF CF US
_ USL LR LR MA MA BMG BMG US2
US2 MM MM VS VS KR JS JS
different JMK JMK S SF AM AM AR AR
TdiP TdiP PW PW RB RB AS AS
SEXES AW MW MW NW NW NW NWBF
BFE TE TE AC AC AS AB AB
L |
2. Cvs.D (%) 76 6 82




Results of statistical tests [columns] performed by students

in relation to real situations [rows]
ADULT HEIGHT

"Can't say" "different” No. of
p>0.10 p<0.10 Tests
("negative") ("positive")
("N.S") ("Stat. sig.")

3. A VS. C (:) BM BM SP AS AE AE RP SR AS RB AR VS VC VC SP AS
SR M5 M5 USI CF CF KO KO
JB JB KD KD AS AS AC AC
Same Sex TE TE BF BF NW  NW NW  NW
NW NW NW NW AS RB PW PW
PW SF SF AR AM AM Tdi P Tdi P

JMK JMK JS JS KR KR VS MM
4. Bvs.D (=) |w us2 usz BMGBWG M M LR

IR & &
67 8 75
1. Avs.D () |em w ~w mw Jmkw M usl [kp kD EB AS AS ACAC TE
KO JB M5 SP G TE BF BF NW NW NWBMG AS
_ BMCG AS RB RB PW PWSF SF
AR AR AM AM TdiP JS Tdi P JS
different KR KR VS VS MM M JIMK CF
CF KO JB AE RP SRUS2 US2
Sexes NW NW LR LR USI SRVC \C
M5 SP AS AS BM BMGF
1
2. Bvs.C (%) 13 63 76




M&M Ch 6.3 and 6.4 Introduction to Inference ... Use and Misuse of Statistical Tests

"Operating" Characteristics of a Statistical Test

Aswith diagnostic tests, there are 2 ways statistical test
can be wrong:

1) The null hypothesis was in fact correct but the
sample was genuinely extreme and the null
hypothesis was therefore (wrongly) rejected.

2) The alternative hypothesis was in fact correct but
the sample was not incompatible with the null
hypothesis and so it was not ruled out.

The probabilities of the various test results can be put in
the same type of 2x2 table used to show the
characteristics of adiagnostic test.

Result of Statistical Test

"Negative" "Positive"
(do not (reject Hop in
reject Ho)  favour of Hg)

Ho | 1- a a |

TRUTH

Ha | b 1-b |

The quantities (1 - b) and (1 - a) arethe"sengtivity
(power)" and "specificity" of the statistical test.
Statisticians usually speak instead of the complements of
these probabilities, the false positive fraction (a ) and the
false negative fraction (b) as"Type " and "Type |I" errors
respectively [It isinteresting that those involved in
diagnostic tests emphasize the correctness of the test
results, whereas dtatisticians seem to dwell on the errors of
the tests; they have no term for 1-a |.

Note that all of the probabilities start with (i.e. are
conditional on knowing) the truth. Thisis exactly
analogous to the use of sengitivity and specificity of
diagnostic tests to describe the performance of the tests,
conditional on (i.e. given) the truth. As such, they describe
performancein a"what if" or artificial Situation, just as
sengitivity and specificity are determined under 'lab’
conditions.

S0 just as we cannot interpret the result of aDx test
simply on basis of sengitivity and specificity, likewise we
cannot interpret the result of a statistical test in isolation
from what one already thinks about the null/aternative
hypotheses.



M&M Ch 6.3 and 6.4 Introduction to Inference ... Use and Misuse of Statistical Tests

Interpretation of a "positive statistical test"

It should be interpreted n the same way as a "positive
diagnostic test" i.e. in the light of the characteristics of the subject
being examined. The lower the prevalence of disease, the
lower is the post-test probability that a positive diagnostic test
is a "true positive". Similarly with statistical tests. We are now
no longer speaking of sensitivity = Prob( test + | Hgz) and
specificity = Prob( test - | Hp ) but rather, the other way round,
of Prob( Ha | test + ) and Prob( Hg | test - ), i.e. of positive and
negative predictive values, both of which involve the
"background" from which the sample came.

A Popular Misapprehension: It is not uncommon to see or
hear seemingly knowledgeable people state that

"the P-value (or alpha) is the probability of being
wrong if, upon observing a statistically significant
difference, we assert that a true difference exists"

Glantz (in his otherwise excellent text) and Brown (Am J Dis
Child 137: 586-591, 1983 -- on reserve) are two authors who
have made statements like this. For example, Brown, in an
otherwise helpful article, says (italics and strike through by JH) :

1[incidentally, there is a second error in this statement : it has to do with
equating a "statistically significant" difference with an important one...
minute differences in the means of large samples will be statistically
significant ]

page 11

But if one follows the analogy with diagnostic tests, this
statement is like saying that

"1-minus-specificity is the probability of being wrong if, upon
observing a positive test, we assert that the person is diseased".

We know [from dealing with diagnostic tests] that we cannot turn
Prob(test | H) into Prob(H | test) without some knowledge
about the unconditional or a-priori Prob(H ) 's.

The influence of "background" is easily understood if one
considers an example such as a testing program for potential
chemotherapeutic agents. Assume a certain proportion P are
truly active and that statistical testing of them uses type | and
Type Il errors of a and b respectively. A certain proportion of
all the agents will test positive, but what fraction of these
"positives” are truly positive? It obviously depends on a and
b, but it also depends in a big way on P, as is shown below for
the case ofa = 0.05,b =0.2.

P-->0.001 .01 .1 .5
TP = P(1- b) --> .00080 .0080 .080 .400
FP = (1 - P)(a)-> .04995 .0495 .045 .025
Ratio TP : FP --> »1:62 »1.6 »2:1 »16:1
Note that the post-test odds TP:FP is
) ) , 1-b
P(1-b):(1-P)@a) ={P:(1-P)} [ 4 |
PRIOR function of TEST's
characteristics

i.e. it has the form of a "prior odds" P : (1 - P), the
"background" of the study, multiplied by a "likelihood ratio
positive" which depends only on the characteristics of the
statistical test. Text by Oakes helpful here




Are All Significant P Values Created Equal? The Analogy Between Diagnostic Tests and Clinical Research

Warren S Browner, MD MPH and Thomas B Newman, MD MPH t

Just as diagnostic tests are most helpful in light of the clinical
presentation, statistical tests are most useful in the context of
scientific  knowledge. Knowing the specificity and sensitivity of a
diagnostic test is necessary, but insufficient: the clinician must also
estimate the prior probability of the disease. In the same way,
knowing the P value and power, or the confidence interval, for the
results of a research study is necessary but insufficient: the reader
must estimate the prior probability that the research hypothesis is
true. Just as a positive diagnostic test does not mean that a patient
has the disease, especially if the clinical picture suggests otherwise,
a significant P value does not mean that a research hypothesis is
correct, especially if it is inconsistent with current knowledge.
Powerful studies are like sensitive tests in that they can be
especially useful when the results are negative. Very low P values
are like very specific tests; both result in few false-positive results
due to chance. This Bayesian approach can clarify much of the
confusion surrounding the use and interpretation of satistical tests.

(JAMA 1987;257:2459-2463)

IN THE four ORIGINAL CONTRIBUTIONS in thisissue of THE JOURNAL, the
authors report the results of statistical tests of 76 hypotheses.1-4 Of these, 32 had
significant P values (P<.05). But do these P values imply that the 32 hypotheses are
true? Or that 95% of them are true? Are all significant P values created equal ?

t From the Departments of Medicine (Dr Browner), Pediatrics (Dr Newman), and
Epidemiology and International Health (Drs Browner and Newman), School of
Medicine, University of Californiaat San Francisco, and the Clinical Epidemiology
Program, Institute for Heath Policy Studies, San Francisco (Drs Browner and
Newman).

Interpretation of Statistical Tests: Browner and Newman

The answer to these questionsis "No!" What thenisaP value? It is the likelihood
of observing the study results under the assumption that the null hypothesis of no
differenceistrue. Probably because this definition is elusive and intimidating,
understanding P values (and other statistical concepts like power, confidence
intervals, and multiple hypothesis testing) is often left to expertsin thefield. Itis
easier just to check whether aP valueis .05 or less, call the result "statistically
significant," regard the tested hypothesis as probably true, and move on to the next

paragraph.

Readers of medical literature need not give up quite so quickly, however. As
Diamond and Forrester® pointed out, many statistical concepts have remarkably
similar analogues in an area familiar to clinicians - the interpretation of diagnostic
tests. In the diagnosis of Cushing's syndrome, for example, most clinicians
recognize that an elevated serum cortisol level is more useful than an elevated blood
glucose level, and that an elevated cortisol level is more likely to be due to Cushing's
syndrome in amoon-faced patient with a buffalo hump and abdominal striae thanin
an overweight patient with hypertension.®-7 Why?? Because the interpretation of a
test result depends on the characteristics of both the test and the patient being

tested 8-13

The same type of reasoning - called Bayesian analysis after Thomas Bayes, the

mathematician who developed it more than 200 years agol4 - can also be used to
clarify the meaning of the P value and other statistical terms. Although this
application of Bayes' ideas has been discussed in epidemiologic and statistical
literature,15-18 it has received less attention in the journals read by clinicians. In
this article, we begin with the basic aspects of the analogy between research studies
and diagnostic tests, such as the similarity between the power of a study and the
sensitivity of atest, and then examine more challenging issues, such as how a study
with multiple hypotheses resembles a serum chemistry panel.

THE ANALOGY

An overview of the analogy between research studies and diagnostic testsis shown in
Table 1. In this analogy, aclinician obtains diagnostic data to test for the presence of
adisease, such as breast cancer, and an investigator collects study datato determine
the truth of aresearch hypothesis such asthat the efficacies of two drugs differ in
the treatment of peptic ulcer disease. (The research hypothesisis often called the
alternative hypothesis in standard terminology.) The absence of adisease (no
breast cancer) is like thenull hypothesis of no difference in the efficacy of the two
drugs.

Theterm "positive" is used in its usual sense: to refer to diagnostic tests that are
consistent with the presence of the disease and to studies that have statistically

1



Are All Significant P Values Created Equal? The Analogy Between Diagnostic Tests and Clinical Research

significant results. Similarly, "negative" refersto diagnostic tests consistent with
the absence of disease and research results that fail to reach statistical significance.
Thus there are four possible results whenever a patient undergoes a diagnostic test.
Consider the use of fine-needle aspiration in the evaluation of a breast mass, for
example (Table 2). If the patient has breast cancer, there are two possibilities: the
test result can either be correctly positive or incorrectly negative. On the other hand,
if the patient actually does not have cancer, then the result will either be correctly
negative or incorrectly positive. Similarly, there are four possible results whenever
an investigator studies aresearch hypothesis (Table 3). If the efficacies of the two
drugs really do differ, there are two possibilities: the study can be correctly positive if
it finds a difference or incorrectly negative if it missesthe difference. If the two drugs
actually have the same efficacy, then the study can either be correctly negative if it
finds no difference or incorrectly positiveif it doesfind one.

Table I.-The Analogy Between Diagnostic Tests and Research Studies

Diagnostic Test Research Study

Absence of disease Truth of null hypothesis
Presence of disease Truth of research (altematve hypothesis
Positive result (outside normal limits) Positive result (reject null hypothesis)

Negative result (within normal limits) Negative result (fail to reject null

hypothesis)
Sensitivity Power
False-positive rate (I - specificity) P value

Prior probability of disease Prior probability of research hypothesis

Predictive value of a positive (or
negative) test result

Predictive value of a positive (or
negafive) study

The relationships between the four possible outcomes of a diagnostic test are usually
expressed as the sensitivity and specificity of the test, which are determined by
assuming that the presence or absence of the disease is known. Sensitivity isthe
likelihood that atest result will be positive in a patient with the disease. Specificity
isthe likelihood that atest result will be negative in a patient without the disease. If
the result from a fine-needle aspiration is positive in 80 of 100 women with breast
cancer, and negative in 95 of 100 women without cancer, the test would have a
sensitivity of 80% and a specificity of 95%. Thereis another term that is useful in
the analogy: the false-positive rate (1-specificity), which is the likelihood that a test
result will be (falsely) positive in someone without the disease. In this example, the

Interpretation of Statistical Tests: Browner and Newman

false-positive rate is 5%: of 100 women without breast cancer, five will have falsely
positive test results.

Table 2.—The Four Possible Results of a Diagnostic Test
If Breast Mass is actually:
Malignant Benign

Positive  Thisis atrue-positive test:
result is correct

Thisis a false-positive test:
And Result of result is incorrect
Fine-Needle
Aspirateis:
Negative Thisis afalse-negative test:
result is incorrect

Thisis atrue-negative test
result is correct

Similarly, the relationships between the four possible outcomes of a research study
are usually expressed asthe power andP value of the study, which are determined by
assuming that the truth or falsity of the null hypothesisis known. Power isthe
likelihood of a study being positive if the research hypothesisistrue (and the null
hypothesisisfalse); it is analogous to the sensitivity of adiagnostic test. The P
valueisthe likelihood of a study being positive when the null hypothesisis true; it
is analogous to the false-positive rate (1 - specificity) of adiagnostic test. A study
comparing two drugs in the treatment of ulcers that has an 80% chance of being
correctly positive if thereredlly is a differencein their efficacies wuould have a power
of 0.80. A study with a 5% chance of being incorrectly positiveif thereis no
difference between the drugs would have aP value of .05. (Conventionally, when the
Pvaueislessthan acertain predetermined "level of statistical significance," usually
.01 or .05, the results are said to be "statistically sign)ficant.")

Table 3.—The Four Possible Results of a Research Study

If Research Hypothesis is actually:
True False
(Efficacy of Drug A and

Drug B differ in treatment
of ulcer disease)

(Drug A has same efficacy as B
in treatment of ulcer disease)

Positive  Thisis atrue-positive study:
result is correct

Thisis afalse-positive study:
And Result of result is incorrect
Study is:
Negative Thisis afalse-negative study:
result is incorrect

Thisis atrue-negative study
result is correct

Knowing the sensitivity and specificity of atest is not aufficient, however, to
interpret its results: that interpretation also depends on the charactertistics of the
patient being tested. If the patient is a 30-year-old woman uith several soft breast
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masses, a positive result from a fine-needle aspiration (even with afalse-positive rate
of only 5%) would not suffice to make a diagnosis of cancer. Similarly, if the patient
is a 60-year-old woman with afirm solitary breast mass, a negative aspirate result
(with a sensitivity of 80%) would not rule out malignancy1® Clinicians use these
sorts of patient characteristics to estimate the prior probability of the disease—the
likelihood that the patient has the disease, made prior t to knowing the test results.
The prior probability of adiseaseis based on the history and physical findings,
previous experience with similar patients, and knowledge of alternative diagnostic
explanations. It can be very high (breast cancer in the 60-year old woman with a
single firm mass), very low (breast cancer in the younger woman), or somewherein
between. Although they may not realize it, clinicians express prior probabilities
when using phrases such as "alow index of suspicion” or "astrong clinical
impression.”

In the same way, knowing the power and the P value of a study is not sufficient to
determine the truth of the research hypothesis. That determination also depends on the
characteristics of the hypothesis being studied. Suppose one drug is diphenhydramine
hydrochloride (Benadryl) and the other is chlorpheniramine maleate (Chlor-Tri-
meton): a positive study (at P=0.05) would not ensure that one of the drugsis
effective in the treatment of ulcers Similarly, if one drug was ranitidin hydrochloride
(Zantac) and the other placebo, a negative study (even with power of 0.80) would not
establish the ineffectiveness of ranitidine. The characteristics of aresearch hypothesis
determine its prior probability—an estimate of the likelihood that the hypothesisis
true, made prior to knowing the study results. The prior probability of a hypothesis
is based on biologic plausibility, previous experience with similar hypotheses. and
knowledge of aternative scientific explanations Analogous to the situation with
diagnostic tests, the prior probability of aresearch hypothesis can be very high (that
an Hx-blocker, such asranitidine is more effective than placebo in the tresatment of
ulcers), very low (that the efficacies of two H1-blockers, such as diphenhydramine
and chlorpheniramine, differ in the treatment of ulcer disease), or somewherein
between. Authors of research reports indicate prior probabilities with terms like
"unanticipated” or "expected" when they discusstheir results.

The advantage of Bayesian analysisin interpreting diagnostic testsis that it can
determine what the clinician really wants to know—the likelihood that the patient
has the disease, given a certain test result. Bayesian analysis combines the
characteristics of the patient (expressed as the prior probability of disease), the
characteristics of the test (expressed as sensitivity and specificity), and the test result
(positive or negative) to determine the predictive value of atest result. The predictive
value of apositive diagnostic test is the probability that given a positive result, the
patient actually has the disease. (The predictive value of anegative test isthe
probability that given a negative result, the patient does not have the disease.)

Asan example, recall the 60-year-old woman with afirm breast mass. The prior
probability that the massis malignant is moderate, say 50%. A positive result from
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afine-needle aspirate (with a specificity of 95% and a sensitivity of 80% for cancer)
resultsin avery high predictive value for malignancy, about 94% (Figure). Next,
consider the 30 year-old woman with multiple soft masses. The prior probability of
cancer islow, say 1%. Even given a positive aspirate result, the likelihood that she
has breast cancer is still small (about 14%).

A Bayesian approach can also be used to determine what the reader of aresearch study
really wants to know—the likelihood that the research hypothesisistrue, given the
study results. It combines the characteristics of the hypothesis (expressed as prior
probability), the characteristics of the study (expressed as power and the P value), and
the study results (positive or negative) to determine the predictive value of a study.
The predictive value of a positive study is the probability that given a positive result,
the research hypothesisis actually true. (The predictive value of a negative study is
the probability that given a negative result, the research hypothesisisfalse.)

The predictive value of aresearch study, however, is usually harder to estimate than
the predictive value of a diagnostic test (see "Limitations" section). Nonetheless, the
basic analogy remains valid: the prior probability of the hypothesis must be
combined with the power and the P value of the study to determine the likelihood
that the research hypothesisis true. In the next section, we discuss how this analogy
can be used to understand several statistical concepts.

IMPLICATIONS
Specificity and the P Value

How low must a P value be for it to be accepted as evidence of the truth of aresearch
hypothesis? This question is analogous to asking: how high must the specificity of a
test be to accept a positive test result as evidence of a disease? Requiring that a P
value be less than 0.05 before it is "significant” is as arbitrary as requiring that a
diagnostic test have a specificity of at least 95%. A more important criterion, but one
that is not as easy to quantitate, is whether the results of the study combined with the
prior probability of the research hypothesis are sufficient to suggest that the
hypothesisis true. Consider the hypothesis, tested in the Lipid Research Clinics
Primary Prevention Trial 20 that cholestyramine resin decreases the incidence of
coronary heart disease in hyperchol esterolemic men. This research hypothesis had at
least alow to moderate prior probability, based on previous evidence. Even with a
"nonsignificant" P value of .094 (the two-sided equivalent of the controversial one-
sided P=.047 reported by the investigators), the hypothesisis likely to be true.

It isaso amistake to believe aresearch hypothesis just because aP valueis
statistically significant. Consider a study that found that drinking two or more cups
of coffee aday was associated with pancreatic cancer (P<.06).2' This hypothesishad a
very low prior probability: the authors called the association "unexpected." Thus,

3



Are All Significant P Values Created Equal? The Analogy Between Diagnostic Tests and Clinical Research

finding a significant P value did not establish the truth of the hypothesis; subsequent
studies, including one by the same authors, failed to confirm the association. 22-27

Of course, many diagnostic test results are not simply reported as "positive"; they
also indicate how abnormal the result is. The more abnormal that result, the less
likely that it is just a chance finding in a normal person. If the upper limit of normal
for aserum thyroxine level at a specificity of 95% is 12.0 pg/dL (154 nmol/L), then
athyroxine level of 18.0 pg/L (232 nmol/L) is amost certainly abnormal. The
guestion becomes whether it represents hyperthyroidism, another disease, or a
laboratory error. By analogy, if the cutoff for calling a study positiveisaP value
less than .05, then a P value of .0001 means chance is an extremely unlikely
explanation for the findings. The question becomes whether the results indicate the
truth of the research hypothesis or are aresult of confounding or bias (see
"Laboratory Error and Bias' and "Alternative Diagnoses and Confounding
Explanations" sections). Because the P value is analogous to the false-positive rate
(1- specificity), astudy with avery low P value islike atest with very high
specificity: both give few false-positive results due to chance, but may require careful
consideration of other possible explanations.

Sensitivity and Power

When the result of a diagnostic test that has a high sensitivity is negative, such asa
urinalysisin the diagnosis of pyelonephritis, it is especially useful for ruling out a
disease. Similarly, when a powerful research study is negative, it strongly suggests
that the research hypothesisis false. However, if the sensitivity of atest islow, such
as a sputum smear in a patient with possible tuberculosis, then a negative result does
not rule out the disease.? In the same way, a negative study with inadequate power
cannot disprove a research hypothesis, 28,29

Laboratory Error and Bias

When unexpected or incredible results on a diagnostic test are found, such as a serum
potassium level of 9.0 mEgIL (mmol/L) in an apparently well person, the first
possibility to consider islaboratory error: Was the test adequately performed? Did the
sample hemolyze? Was the specimen mislabeled? Similarly, readers of aresearch
study, such as atrial of biofeedback in the treatment of hypertension, must always
consider the possibility of bias, especialy if the study yields surprising results: Was
the study adequately designed and executed? Did the investigators assign subjects
randomly? Was blood pressure measured blindly? 30 Improperly performed tests and
biased studies do not ~ ield reliable information, no matter how specific or significant
their results.

Alternative Diagnoses and Confounding Explanations

Interpretation of Statistical Tests: Browner and Newman

Even if adiagnostic test is adequately performed, there may be several explanations
for the result. An elevated serum amylase level, for example. has a high specificity to
distinguish patients who have pancreatitis from those with nonspecific abdominal
pain. However, there are extrapancreatic diseases (such as bowel infarction) that
elevate the amylase level and that must be considered in the differential diagnosis. In
the same way, athough alow P value may indicate an association between an
exposure and a disease (like the association between carrying matches and lung
cancer), a confounder (cigarette smoking) may actually be responsible. Readers of
research studies should always keep in mind potential confounding explanations for
significant P values.

Better Tests and Bigger Studies

Increasing the sample size in aresearch study is similar to using a better diagnostic
test. Better diagnostic tests can have more sensitivity or specificity or both, large
studies can have greater power or lower levels of statistical significance or both.
Often the choice of adiagnostic test isamatter of practicality: biopsies are not
feasiblein every patient for every disease. Similarly, power or the significance level
may be determined by practical considerations, since studies of 20 000 or more
subjects cannot be done for every research question. Of course, bigger studies may
find smaller differences, just like better tests may detect less advanced cases of a
disease. A small but statistically significant difference in aresearch study islike a
subtle but definite abnormality on a diagnostic test; itsimportance is a matter of
judgment.

Intentionally Ordered Tests and Prospective Hypotheaea

A positive result on asingle intentionally ordered test is more likely to indicate
disease than the same result that turns up on a set of routine admission laboratory
tests. Similarly, the P value for aresearch hypothesis stated in advance of astudy is
usually more meaningful than the same P value for a hypothesis generated by the
data. The reason isthat clinicians usually order tests and investigators state
hypotheses in advance when the prior probability is moderate or high. Thus the
predictive values of positive results are generally greater for intentionally ordered tests
and prospectively stated hypotheses.

Not all unexpected results however, have low prior probabilities. Occasionally,
clinicians or investigators are just not smart or lucky enough to consider the
diagnosis or hypothesis in advance. For example, a house officer caring for a patient
with fatigue and vague abdominal symptoms might ignore a serum calcium level of
10.5 mg/dL (2.62 mmol/L) until the attending physician mentions the possibility of
hyperparathyroidism in rounds the next morning. Similarly, researchers might
disregard the association between smoking and cervical cancer until aplausible
biologic explanation is suggested.31-34 Estimating the prior probability of a
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hypothesis on the basis of whether it was considered prospectively is auseful, but
not infallible, method. The truth, elusive though it sometimes may be, does not
depend on when a hypothesis is first formulated.

Multiple Tests and Multiple Hypothesea

Most of us are intuitively skeptical when one of 50 substances on a checklist is
associated with a disease at P<.05 because of the likelihood of finding such an
association by chance alone. A standard technique for dealing with this problem of
testing multiple hypothesesis to use a more stringent level of statistical
significance, thus requiring alower P value.3% 36 This approach is simple and
practical, but it leads to some unsatisfying situations. It seems unfair, for example,
to reduce the required significance level for areasonable hypothesis just because
other, perhaps ridiculous, hypotheses were also tested. What if the disease was
mesothelioma and one of the exposures was asbestos: should a more stringent level
of statistical significance be required because 49 other substances were a'so included?
Should the level of significance be reduced when testing the main hypothesis of a
study whenever additional hypotheses are considered? Need statistical adjustments for
multiple hypothesis testing be made only when reporting all of the hypothesesin a
single publication?

This vexing problem of multiple hypothesis testing resembles the interpretation of a
serum chemistry panel. When a clinician evaluates a patient with a swollen knee, a
serum uric acid level of 10.0 mg/dL (0.6 mmol/L) has the same meaning no matter
how many other tests were also performed on the specimen by the autoanalyzer.
However, an unanticipated abnormal value on another test in the panel islikely to be
afalse-positive: that is because the diseases it might represent usually have low prior
probabilities, not because several tests were performed on the same sample of serum.
Similarly, testing multiple hypotheses in a single study causes problems because the
prior probabilities of such hypotheses tend to be low: when investigators are not
sure, what they are looking for, they test many possibilities. The solution isto
recognize that it is not the number of hypotheses tested, but the prior probability of
each of them, that determines whether a result is meaningful.

Confirmatory Tests and Pooled Studies

When asingle diagnostic test is insufficient to make a diagnosis, additional tests are
often ordered, some results of which may be positive and some negative. The
clinician revises the probability of the disease by combining these results, often
weighting them by the tests' characteristics. In a patient with a swollen leg, for
example, anormal result from a Doppler study would lowerwer the probability of
deep venous thrombosis, but an abnormal result of afibrinogen scan might raise it
aufficiently to make the diagnosis. In the same way, it may be necessary to combine
the results of several research studies weighting them by the characteristics of each
study. This process, known as pooling, alows studies with both significant and
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nonsignificant P values to change incrementally the likelihood that a research
hypothesisis true. Howeever, just as only those tests that are relevant to the
diagnosisin question should be combined, only those research studies that address the
same research hypothesis should be pooled.

Confidence Intervals

Thereis no ready diagnostic test analogy for confidence intervals from research
studies (the concept of test precision comes closest). But because confidence intervals
are commonly mis-interpreted as expressions of predictive value, they merit a short
discussion. The term "confidenceinterval" is unfortunate, because it leads many
people to believe that they can be confident that the interval contains the true value
being estimated. Actually, confidence intervals are determined entirely by the study
data: the prior probability that the true value lies within that interval is not at all
considered in the calculations. A 95% confidence interval is simply tne range of
values that would not differ from the estimate provided by the study at a statistical
significance level of 0.05 38,39,

Confidence intervals are useful because they define the upper and lower limits
consistent with a study's data. But they do not estimate the likelihood that the results
of the research are correct. A confidence interval provides no more information about
the likelihood of chance as an explanation for afinding than doesa P value#0 Asan
example, suppose awell-designed study finds that joggers are twice as likely as non-
joggers to develop coronary heart disease, with a 95% confidence interval for the
relative risk of 1.01 to 3.96. (Thisis equivalent to rejecting the null hypothesis of
no association between jogging and heart disease at P=.05). Despite a 95% confidence
interval that excludes 1.0, there is obviously not a 95% likelihood that joggers are at
anincreased risk of coronary heart disease. There are many other studiesthat have
found that exercise is associated with areduced risk of heart disease. Given the low
prior probability of the hpothesis that jogging increases the risk of coronary heart
disease, chance (or perhaps bias) would be amore likely explanation for the results.

LIMITATIONS

While it provides several useful insights the analogy between diagnostic tests and
clinical research isnot perfect. It is easier to determine the prior probability of a
disease, based on the prevalence of the disease in similar patients, than the prior
probability of a hypothesis, based on the prevalence of the truth of similar
hypotheses. Similarity in patients can be defined by characteristics known to be
associated with a disease, such as age, sex, and symtoms.11 But what defines similar
hypotheses? Thus the prior probability of most research hypotheses tends to be a
subjective estimate (although, in practice estimates of the prior probability of a
disease are generally subjective as well).
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Second, aslong asthereis agold standard for its diagnosis, adisease is either present
or absent: there are only these two possibilities. If agroup of patients known to have
the disease is assembled, a single value for the sensitivity of atest can be determined
empirically. But there is no single value for the power of aresearch study: it depends
on the sample size, as well as the magnitude of the actual difference between the
groups being compared. A study comparing 1Q in internists and surgeons for
example, might have a power of only 50% to detect a difference between them if
surgeons actually scored five points higher than internists, but a power of 98% if
surgeons actually scored ten points higher. Since the actual difference is unknown, a
unique value for power cannot be calculated.

CONCLUSIONS

Clinicians do not simply decide that a patient has a disease when a diagnostic test
result is positive or rule out the disease when the test result is negative. They aso
consider the sensitivity and specificity of the test and the characteristics of the patient
being tested. In the same way, readers should not believe or disbelieve the research
hypothesis of a study on the basis of whether the results were statistically
significant. They should also take into account the study's power and P value and the
characteristics of the hypothesis being tested.

Thus, al signficant P values are not created equal. Just as the accuracy of adiagnosis
depends on how well the clinician has estimated the prior probability and considered
alternative diagnoses and laboratory errors, the interpretation of a research study
depends on how well the reader has estimated the prior probability and considered
confounders and biases. Knowing the power and P value (or the confidence interval)
for a study's results, like knowing the sensitivity and specificity of a diagnostic test,
is necessary but not sufficient. This Bayesian approach requires the active
participation of the reader and emphasizes the importance of scientific context in the
interpretation of research.

This project was supported by a grant from the Andrew W. .Mellon Foundation.
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